
Locality management using multiple SPMs on the
Multi-Level Computing Architecture

Ahmed M. Abdelkhalek and Tarek S. Abdelrahman

The Edward S. Rogers Department of Electrical and Computer
Engineering

University of Toronto

Oct. 26th, 2006
ESTIMedia, Seoul, Korea

2

Motivation for MLCA

1. Parallel programming is difficult
2. Need flexible MP-SoC architectures

Developed by:
F. Karim, A. Mellan, A. Nguyen - STMicroelectronics
U. Aydonat, T. Abdelrahman - Univ. of Toronto
“A Multi-Level Computing Architecture for
Multimedia Applications”

IEEE Micro, vol. 24, no. 3, 2004

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

3

What is the MLCA?

Abstract micro-processor architecture

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

sequential program

Fetch & decode

Instr.
queue

GPR

FU FU
Memory

FU

4

What is the MLCA?

Abstract micro-processor architecture

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

sequential program

Fetch & decode

Instr.
queue

GPR

FU FU
Memory

FU

superscalar technology
exploits instr. level

parallelism

5

What is the MLCA?

Abstract micro-processor architecture

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

sequential program

Fetch & decode

Instr.
queue

GPR

FU FU
Memory

FU

superscalar technology
exploits instr. level

parallelism

6

What is the MLCA?

Abstract micro-processor architecture

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

sequential program

Fetch & decode

Instr.
queue

GPR

FU FU
Memory

FU

superscalar technology
exploits instr. level

parallelism

Isn’t parallel execution the goal of parallel programming?

7

What is the MLCA?

Abstract micro-processor architecture

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

sequential program
of task instructions

Fetch & decode

Instr.
queue

GPR

FU FU
Memory

FU

superscalar technology
exploits task level

parallelism

Abstract
Multi-Level Computing Architecture

Control processor

Task
dispatcher

Memory

PU PU

Universal
Register

File PU

8

What is the Multi-Level Computing Architecture?

Novel flexible MP-SoC architecture
New parallel programming model

Targets application TLP and ILP

Uses layered approach in HW and SW
Upper layer exploits TLP

HW: control processor, task dispatcher, and universal
register file (URF)
SW: control program

Lower layer exploits ILP
HW: processing units
SW: task functions

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

9

MLCA Architecture & Programming Model

Exploit ILP
CPU, DSP, ASIC, etc.

do {
notzero = Add (in v1, in v2, out v3);
if (notzero)

Div (in v3, in v4, out v5);
done = CheckDone (in v4, in v6, out v3);

} while (done==0);

Sample control program

int Add () {
int n1 = readArg(0);
int n2 = readArg(1);
writeArg(0, n1+n2);
return (n1+n2)!=0;

}

Sample task function

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

Control processor

Task
dispatcher

Memory

PU PU

Universal
Register

File PU

Exploit
TLP

10

MLCA Architecture & Programming Model

do {
notzero = Add (in v1, in v2, out v3);
if (notzero)

Div (in v3, in v4, out v5);
done = CheckDone (in v4, in v6, out v3);

} while (done==0);

Sample control program

int Add () {
int n1 = readArg(0);
int n2 = readArg(1);
writeArg(0, n1+n2);
return (n1+n2)!=0;

}

Sample task function

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

Reduced SW complexity:
no explicit parallel programming
synchronization and communication
separate from actual computations

Automatic extraction of parallelism
superscalar technology

Flexibility
PU number/types
memory hierarchy
scheduling policy

11

MLCA Architecture & Programming Model

do {
notzero = Add (in v1, in v2, out v3);
if (notzero)

Div (in v3, in v4, out v5);
done = CheckDone (in v4, in v6, out v3);

} while (done==0);

Sample control program

int Add () {
int n1 = readArg(0);
int n2 = readArg(1);
writeArg(0, n1+n2);
return (n1+n2)!=0;

}

Sample task function

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

Optimizing system
How divide application into tasks?
How decide on task arguments?
Application-architecture matching

Simple path to initial solution exists

12

Outline

MLCA intro
Motivation
Target MLCA
Problem definition
Global task data mgmt
Evaluation
Conclusion

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

13

Motivation

MLCA flexible architecture:
Opportunity for optimization
Focus on memory hierarchy

Silicon technology scaling:
Performance improving faster for gates than wires
Cross-chip communication becoming more expensive

Avoid centralized memory:
Better scalability for future MLCA chips

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

14

Target MLCA

MLCA naturally breaks down data into two types:
Intra-task data: created and destroyed by task each time it executes, not
needed by other tasks
Inter-task data: needed by more than one task, identified through the URF

store intra-task data

Distributed-shared (NUMA)
Scratch-Pad Memory banks

store inter-task data

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

Task
dispatcher

PU 0

Private
memory

URF data
bank 0

PU 1

Private
memory

URF data
bank 1

PU 2

Private
memory

URF data
bank 2

Control
processor

URF
Control

15

Problem definition

How do we efficiently use the target MLCA?
How is global data allocated in the distributed
banks?
How to ensure access locality?
Use static approach or allow dynamic data
movement between banks?

How to easily integrate with MLCA 2-level
programming model?
Focus on global data mgmt only

Local task data handled by PU cache, etc.

Goal: better performance and easy-to-use

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

16

Global task data mgmt

Approach:
Minimize cross-chip communication
Execute task on PU near bank with global data it needs

Methodology:
Bank memory allocation: task creates data in certain
bank
Task-bank association: indicate preference of where
to schedule
Bank data replication/migration: copy/move global
data between banks
Appropriate task scheduling policies
Easy to use in control program

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

17

Example control program

while (…) {
setup (out x bank 1,

out y bank 2, // bank memory allocation
out z bank 3);

taskA (in x, out x) on bank 1; // task-bank association
taskB (in y) on bank 2;
taskC (in z) on bank 3;

move x, bank 3; // bank data migration
copy y, ycopy, bank 3; // bank data replication
taskD (in x, in ycopy, in z) on bank 3;
…

}

Bank identifier

Problem with loops:
All iterations use same sets of banks
Not desirable with independent iterations

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

18

Example control program

while (…) {
setup (out x bank 1, out y bank 2, out z bank 3); // bank memory allocation

taskA (in x, out x) on bank 1; // task-bank association
taskB (in y) on bank 2;
taskC (in z) on bank 3;

move x, bank 3; // bank data migration
copy y, ycopy, bank 3; // bank data replication
taskD (in x, in ycopy, in z) on bank 3;
…
remap bank 1, bank 2, bank 3; // bank remapping

}

Virtual bank number

Solution for loops:
Application uses virtual bank numbers
Virtual numbers mapped to physical ones at run-time

Bank remapping: indicate next iteration can use different banks

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

19

Example control program

while (…) {
setup (out x bank 1, out y bank 2, out z bank 3); // bank memory allocation

taskA (in x, out x) on bank 1; // task-bank association
taskB (in y) on bank 2;
taskC (in z) on bank 3;

move x, bank 3; // bank data migration
copy y, ycopy, bank 3; // bank data replication
taskD (in x, in ycopy, in z) on bank 3;
…
remap bank 1, bank 2, bank 3; // bank remapping

}

Virtual bank number

Focus on optimization not correctness
Limit copies to constant data

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

20

Task scheduling policies

Task-bank association serves as hint to scheduler
Various ways to deal with at run-time:

Completely ignore
E.g. schedule first ready task on any PU

Strictly adhere to
E.g. only schedule task on PU preference

Somewhere in between
E.g. schedule on preference, but ignore if wait too long

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

21

Evaluation

MLCA simulator
C++/SystemC timed functional simulator

Media applications:
MP3 decoder, FM radio demodulator, GSM voice
encoder

Evaluate against:
minimum support needed to use target MLCA
round-robin for data allocation in banks and for
task scheduling

Vary NUMA-ness of bank accesses

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

22

Results

Impact of individual techniques:
Bank memory allocation and task-bank association: up to 21%
Bank remapping: up to 18%
Bank data replication/migration: up to 22%

Applications with various types of parallelism can benefit:
GSM: pipeline //ism across iterations: 19%
MP3: //ism within iteration and coarse pipeline //ism: 33%
FMR: //ism within iteration and fine pipeline //ism: 40%

Impact increases with NUMA-ness of banks
All apps benefit when remote bank access >= 14 PU cycles

Scheduling policies that favor local access are necessary

Only 6-14% potential for improvement remaining!

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

23

Conclusion

This work:
Introduced distributed-shared memory MLCA
Solution for global task data mgmt

programming directives
task scheduling policies

Showed effectiveness of our approach at improving
performance

Future work:
Compiler support
Hardware evaluation

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

24

Thank you!

Questions / Comments?

25

Task scheduling policies

FR:
first ready task on first ready PU, visit PUs in round-robin fashion

CL:
first ready task on closest ready PU

POLA:
schedule task only on PU near bank preference, allow look
ahead down task ready queue

POLATO:
same as POLA but timeout after certain threshold and revert
back to FR

POLAEM/POLAEMTO:
same as POLA/POLATO but apply bank preference scheduling on
moves and copies as well

A. M. Abdelkhalek - ESTIMedia, Oct. 26-27, 2006, Seoul

	Locality management using multiple SPMs on the Multi-Level Computing Architecture
	Motivation for MLCA
	What is the MLCA?
	What is the MLCA?
	What is the MLCA?
	What is the MLCA?
	What is the MLCA?
	What is the Multi-Level Computing Architecture?
	MLCA Architecture & Programming Model
	MLCA Architecture & Programming Model
	MLCA Architecture & Programming Model
	Outline
	Motivation
	Target MLCA
	Problem definition
	Global task data mgmt
	Example control program
	Example control program
	Example control program
	Task scheduling policies
	Evaluation
	Results
	Conclusion
	Task scheduling policies

