An Energy Characterization Framework for Software-Based Embedded Systems

Donghoon Lee¹,

Tohru Ishihara², Masanori Muroyama², Hiroto Yasuura², Farzan Fallah³

¹ Faculty of ISEE, Kyushu Univ.

² System LSI Research Center, Kyushu Univ.

³ Fujitsu Labs. of America

Introduction

Energy characterization framework

Training bench generation

Experimental results

Summary

Back Ground (1/2)

Power consumption at a processor on embedded system has a big portion

Power Distribution in a PDA class sample device

Cliff Brake, Accelent Systems, Inc. (May, 2003)

www.princeton.edu/~wolf/

Back Ground (2/2)

Power consumption at a processor depends on the software being executed

SW designer should think power dissipation by SW that he is developing

Energy Analysis Tool

We propose a characterization technique to find a good energy model for a processor

Fast, accurate, and processor-independent Instruction level energy estimation

Experimental Result

Energy estimation for JPEG encoder executed on a SH3-DSP processor

Related Work (1/2) High-level energy estimation

- Instruction-level modeling
 - Energy estimation by instruction-set simulator
 - Instruction level energy modeling by measuring the average power consumption of each instruction while executed in a loop

V. Tiwari, S. Malik, and A. Wolfe, "*Power analysis of embedded software: a first step towards software power minimization*," IEEE Tr. On VLSI, vol. 2, no. 4, pp. 437-445, Dec. 1994.

- Structural modeling of the underlying hardware architecture
 - Make power models by estimating capacitance on the circuit
 - Keep track of which units are accessed per cycle by cyclelevel performance simulation

D. Brooks, V. Tiwari, and M. Matonosi, "*Wattch: A Framework for Architectural-Level Power Analysis and Optimization*," in Proc. Of ISCA, pp. 84-94, June. 2000.

Our Approach

Related Work (2/2) Characterization-based energy estimation

- Characterization-based macro-modeling
 - Regression analysis to model software energy
 - Model the energy consumption using linear expression

T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K. Jha, "*High-level software energy macro-modeling*," in Proc. Design Automation Conf., 2001, pp. 605--610.

Overview of Energy Characterization

Energy consumption model based on linear expression
Evaluate energy from each divided instruction frames

Error Sources of this characterization

- Parameter set selection
- Non-linear effects
- Training bench

Motivational Example

Training benced dominates model accuracy !! What is expected for a 'good' training bench ?

80

Criteria on Training Bench (1/2)

Criteria on Training Bench (2/2) $E = c_1 P_1 + \ldots + c_{cache _miss} P_{cache _miss} + c_{branch _miss} P_{branch _miss}$ # cache misses Executed Frames If correlation is strong between two parameters Difficult to derive energy consumption by each parameters Criterion 2 Correlation between parameters

Training Bench Generation Template of Training Bench Execute power hungry instructions repeatedly Produce many cache misses Produce many RAW hazards Produce many pipeline stalls No Instruction Trace Standard deviations of parameter values σ $\forall \sigma > 100$ [∀]ρ < 0.5 Correlation factors of two parameters ρ Yes

Experiment

Target system

Processors

- M32R-II, SH3-DSP
- 0.18 μ m CMOS library

Experimental Result - Energy estimation error

	M32R-II		SH3-DSP	
	Average Error	Maximum Error	Average Error	Maximum Error
JPEG	2.70 %	10.32 %	3.17 %	11.89 %
JPEG_O	6.09 %	16.46 %	6.33 %	10.02 %
MPEG2	1.54 %	3.97 %	1.32 %	3.41 %
MPEG2_O	1.78 %	5.15 %	1.31 %	5.63 %
compress	5.00 %	6.41 %	5.73 %	10.84 %
compress_O	4.35 %	7.18 %	1.73 %	15.15 %
FFT	1.55 %	6.87 %	1.27 %	3.26 %
FFT_O	1.45 %	5.59 %	1.15 %	4.75 %
DCT	1.42 %	8.58 %	1.12 %	2.20 %
DCT_O	1.47 %	8.07 %	1.51 %	3.04 %
Total	2.74 %	16.46 %	2.47 %	15.15 %

Compared to the gate level estimation

*_O : compiled with a "-O3" optimize option

Experimental Result

Energy estimation for JPEG encoder executed on a SH3-DSP processor

Summary

- Proposed energy characterization framework for processor-based embedded system
- Error is on an average 3% and worst case 16%
- Future work
 - Compare result to board level measurement
 - Extend current work to multi-core processor systems
 - Extend to systems running on RTOS

Thank You !

Detailed Characterization Flow

