A Low-Power Implementation of 3D Graphics System for Embedded Mobile Systems

Chanmin Park, Hyunhee Kim and Jihong Kim

School of Computer Science & Engineering, Seoul National University, Korea

> October 26, 2006 ESTIMedia 2006

Outline

- Introduction
 - 3D Graphics 101
- Motivational examples
- Dynamic Voltage Scaling (DVS) for 3D Graphics
 - Inter-frame DVS
 - Intra-frame DVS
 - o Intra-object
 - Inter-object
- Experimental Results
- Conclusions

Introduction

- 3D graphics became an important application for mobile devices
 - Ex) 3D games, navigation, UI, etc.

- 3D graphics applications are "power-hungry"
 - A large number of arithmetic operations and a high frequency of memory accesses
 - Power-aware techniques for 3D graphics are necessary
- Present a dynamic voltage scaling technique for 3D graphics

3D Graphics Pipeline

Object n

Object 1

Face (triangle) 1

Face (triangle) m

Vertex 1 (x1, y1, z1) Vertex 2 (x2, y2, z2) Vertex 3 (x3, y3, z3)

3D Graphics Pipeline

- Different applications have different processing requirements
 - Geometry-bound: a large number of vertices
 - Rasterization-bound: a large number of fragments

Motivational Example - 1

Texsub

- An example of OpenGL tutorial
- 8 vertices, 24388 fragments
- Consumes most of energy in Rasterization phase

Motivational Example - 2

Face model

- A 3D character model
- 4281 vertices, 16562 fragments, lighting
- Consumes 52% of energy in Geometry phase

Motivational Example - 3

Jelly fish

- A shooting game
- o 9187 vertices, 47070 fragments on average
- Dynamically changing workloads due to moving objects & camera movements

Moving Objects & Camera View Point Variations along frames

Workload variation

DVS for Low-Power 3D Graphics

- Key steps for DVS
 - Detection of slack intervals based on workloads
 - Voltage scaling policy for slack intervals
- Conceptual Diagram

Workload Estimator

- 1. Slack Identification
- 2. Slack Distribution
- 3. Frequency & voltage level Decision
- For the first frame, an object list is created
 - For each object, we store information
 - o the number of vertices, the number of triangles, the number of fragments, execution time, lighting parameters, texture parameters for each object
- For every frame completed
 - Object variations are updated
 - Error tolerance threshold: T
 - Validates estimation and controls the error tolerance
 - If the variation is larger than T, the object list is reset

Two Layers of Slack Identification

- Inter-frame DVS
 - The voltage is adjusted by a frame granularity based on the slack times generated from the previous frame
- Intra-frame DVS
 - The voltage is adjusted by an object granularity within a frame
 - Intra-object & Inter-object based on slack distribution

Greedy Slack Distribution

To get more slacks

- Vertex caching
 - Avoid repetitive transformation and lighting calculations of the same (shared) vertices to get more slacks

Experimental Results

- Used a DVS-aware PDA development board
 - Processor: Intel Xscale PXA255
 - Frequency: 7 levels between 100Mhz and 400Mhz
 - Voltage: 3 levels between
 1.0V and 1.3V
 - RAM: 64MB
 - Cache: 32 KB I\$ & D\$
 - Display: 240*320, 16bit color, QVGA
 - OS: Embedded Linux (ver. 2.4.19)

- Power measurements done using DAQ
- OpenGL ES 1.1 based power-aware 3D library
- Test apps: Redbook samples, Facemodel, Jellyfish

Voltage Scaling Patterns

- Face model benefited from the vertex caching
- Less opportunities for voltage scaling in Geometry phase due to many short slacks
 - most voltage scalings occur in Rasterization

Energy Consumption Comparison

Face model

- 47% energy saving in CPU &43% energy saving in memory
- 46% energy saving for total energy consumption
- Jellyfish

 8% energy saving for total energy consumption

18

Conclusions

- Described a DVS scheme applicable to 3D graphics
 - Intra-frame DVS & Inter-frame DVS based on the application's varying workloads
- Implemented the proposed technique using OpenGL ES 1.1
- Achieved an energy saving of up to 46% over a power-unaware implementation

For more information, cmpark@davinci.snu.ac.kr

Thank you

20

System Model - parameters

- Execution time of the j^{th} frame and bottleneck stage, for each i^{th} pipeline stage,
 - \circ C_i : WCET of i^{th} pipeline stage at the maximum processor speed
 - S_i: state enabled or disabled by graphics feature
 - Ex) glEnable(GL_LIGHT), glEnable(GL_TEXTURE_2D), glEnable(GL_DEPTH_TEST)
 - N_i: the iteration factor
 - Ex) number of vertices, number of triangles, number of fragments, etc.
 - P_{th-i}: the throughput factor
 - Ex) 128 bit SIMD → (x, y, z, w) / cycle(s), 4 colors / cycle(s), etc.
 8 Pixel Processing Unit → 8 frgments / cycle(s), etc.

Intra-Frame DVS

Restate the execution time, when a scene has m objects

$$D_{j} = \sum_{o} \sum_{i} \frac{C_{i} S_{i}^{o} N_{i}^{o}}{P_{th-i}} \quad (1 \leq i \leq n, 1 \leq o \leq m)$$

- Static slacks due to bottleneck stages
 - Frequency setting: F_i^o

$$F_{o}^{static} = \frac{\sum_{i=1}^{n} \frac{C_{i} S_{i}^{o} N_{i}^{o}}{P_{th-i}}}{\sum_{i=1}^{n} \frac{C_{i} S_{all}^{o} N_{i}^{o}}{P_{th-i}}} \qquad F_{i}^{o} = F_{o}^{static} \cdot \frac{\left(\frac{C_{i} S_{i} N_{i}}{P_{th-i}}\right)}{B_{j}}$$

where S_{all}^o means all features S_i^o are enabled,

Intra-Frame DVS

- Dynamic slacks between objects
 - Using slacks from the previous object
 - Compensating the misprediction in the previous stage
 - Frequency setting:

$$F_{o+1}^{\,\,dynamic} \ = \frac{\displaystyle\sum_{j=o+1}^{m} \sum_{i=1}^{n} \frac{C_{i} S_{i}^{\,j} N_{i}^{\,j}}{P_{th-i}}}{\displaystyle\sum_{j=1}^{m} \sum_{i=1}^{n} \frac{C_{i} S_{all}^{\,j} N_{i}^{\,j}}{P_{th-i}} - \sum_{j=1}^{o} \sum_{i=1}^{n} \frac{C_{i} S_{i}^{\,j} N_{i}^{\,j}}{P_{th-i}}}$$

where S_{all}^{j} means jth object has all enabled features

Inter-Frame DVS

- Dynamic slacks between frames
 - The slack from the previous frame is used by the first object in the next frame
 - Frequency setting: the same as in the case of dynamic slacks between objects
- Compensating the misprediction in the previous frame
 - Since the intra-frame estimation is a conservative approach, it cannot find all the slack times in advance
 - Such unused dynamic slacks are added to the deadline for the next frame
- If the frame rate is controlled by an application itself, however, the *inter-frame* DVS has no effect on having slack time, since we cannot start processing the next scene earlier at the level of library

Measurement of Energy Consumption

- Physical measurement
 - Host PC: measuring the power consumption of CPU and memory separately (through separate probes)
 - DAQ/Labview: power measuring device

<Fig. Environment for Physical Measurement>

Experimental Results

<Fig. Experimental results>

System Model

• The execution time of the j^{th} frame

$$D_{j} = \sum \frac{C_{i}S_{i}N_{i}}{P_{th-i}} \qquad (1 \leq i \leq n)$$

For each *i*th pipeline stage,

C_i: WCET of ith pipeline stage at the maximum processor speed

S_i: state enabled or disabled by graphics feature

N_i: the iteration factor

 P_{th-i} : the throughput factor

The execution time of bottleneck stage

$$B_{j} = \max \left\{ \frac{C_{i}S_{i}N_{i}}{P_{th-i}} \right\} \qquad (1 \leq i \leq n)$$

Intra-Frame DVS

Restate the execution time, when a scene has m objects

$$D_{j} = \sum_{o} \sum_{i} \frac{C_{i} S_{i}^{o} N_{i}^{o}}{P_{th-i}} \quad (1 \leq j \leq n, 1 \leq o \leq m)$$

- Static slacks due to bottleneck stages
 - Frequency setting:

$$F_{o}^{static} = \frac{\sum_{i=1}^{n} \frac{C_{i} S_{i}^{o} N_{i}^{o}}{P_{th-i}}}{\sum_{i=1}^{n} \frac{C_{i} S_{all}^{o} N_{i}^{o}}{P_{th-i}}} \quad \text{where } S_{all}^{o} \quad \text{means all features } S_{i}^{o} \quad \text{are enabled,} \qquad F_{i}^{o} = F_{o}^{static} \cdot \frac{\left(\frac{C_{i} S_{i} N_{i}}{P_{th-i}}\right)}{B_{j}}$$

$$F_{i}^{o} = F_{o}^{static} \cdot \frac{\left(\frac{C_{i}S_{i}N_{i}}{P_{th-i}}\right)}{B_{j}}$$

- Dynamic slacks between objects
 - Using slacks from the previous object
 - o Compensating the misprediction in the previous stage
 - Frequency setting:

$$F_{o+1}^{dynamic} = \frac{\sum\limits_{j=o+1}^{m}\sum\limits_{i=1}^{n}\frac{C_{i}S_{i}^{j}N_{i}^{j}}{P_{th-i}}}{\sum\limits_{j=1}^{m}\sum\limits_{i=1}^{n}\frac{C_{i}S_{all}^{j}N_{i}^{j}}{P_{th-i}} - \sum\limits_{j=1}^{o}\sum\limits_{i=1}^{n}\frac{C_{i}S_{i}^{j}N_{i}^{j}}{P_{th-i}}} \quad \text{where} \quad S_{all}^{j} \text{ means } j^{th} \text{ object has all enabled features}$$

3D Graphics Pipeline

- Different applications have different processing requirements
 - Geometry-bound: a large number of vertices
 - Rasterization-bound: a large number of fragments

DVS for Low-Power 3D Graphics

Conceptual Diagram

Motivational Examples

- Application Characteristics
 - Geometry-limited
 - Fill (Rasterization)-limited

a. Texsub

b. Face model<Fig. Applications>

c. Jellyfish

<Table. The statistics of applications features>

Application	Vertex	Triangle	Fragment	Texel access	Time(sec)	Lighting
Texsub	8	4	24388	24388	0.161571	Χ
Face model	4281	1427	16562	16562	0.806431	0
Jellyfish (average)	9187	3073	47070	47006	0.669926	Х

<Fig. Performance & Energy>

Workload variation - moving objects

