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Introduction

® 3D graphics became an important
application for mobile devices

© Ex) 3D games, navigation, UI, etc.

® 3D graphics applications are “power-hungry”

© A large number of arithmetic operations and a high
frequency of memory accesses

© Power-aware techniques for 3D graphics are
necessary

® Present a dynamic voltage scaling technique for 3D
graphics

ESTIMedia 2006




3D Graphics Pipeline

Scene Geometry | Rasterizatio
Syl JICUN B (Per-Vertex)| (Per-Fragment]

ﬁ

Scene

30 graphics pipeline

— Object 1

— Face (triangle) 1

Vertex 1 (x1, y1, z1)
Vertex 2 (x2, y2, z2)
_ Vertex 3 (x3, y3, z3)
— Face (triangle) m
— Object n
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Geometry

® Different applications have different processing requirements

© Geometry-bound: a large number of vertices

© Rasterization-bound: a large number of fragments
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Motivational Example - 1

® Texsub
© An example of Open6GL tutorial
© 8 vertices, 24388 fragments
© Consumes most of energy in Rasterization phase

Texsub

O Performance B CPU Energy O Memory Energy

Relative Proportion

o

Transformation
& Projection
Lighting
Culling &
Clipping
W division &
viewport
Setup & Scan
Conversion
Texture
Mapping
Fragment
operations
Framebuffer

Pipeline Stages
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Motivational Example - 2

® Face model
® A 3D character model
© 4281 vertices, 16562 fragments, lighting
© Consumes 52% of energy in Geometry phase

Face model

O Performance B CPU Energy O Memory Energy

Relative Proportion
o

Lighting
Culling &
Clipping

W division &

viewport

Setup & Scan
Texture
Mapping
Fragment
operations

Framebuffer

Transformation
& Projection
Conversion

Pipeline Stages
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Motivational Example - 3

® Jelly fish
© A shooting game
© 9187 vertices, 47070 fragments on average

©® Dynamically changing workloads due to moving objects &
camera movements

Jelly fish

O Performance B CPU Energy O Memory Energy

Relative Proportion
]

]

]
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Transformation
& Projection

Lighting

Culling &

Clipping

W division & &

viewport

Setup & Scan
Conversion

Pipeline Stages
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Moving Objects & Camera View Point
Variationsyalong frames
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Workload variation

Jelly fish
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—=— Triangle_Setup
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Span_Processing
Depth_Test

== Texture_mapping
Fog_fragment
Alpha_fragment
Stencil_fragment

—=— Blending_fragment
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DVS, for Low-Power 3D Graphics

® Key steps for DVS
® Detection of slack intervals based on workloads
© Voltage scaling policy for slack intervals

® Conceptual Diagram

g:> Voltage Controller
-

Scene
Descripﬁon Estimator (Per-Vertex) ((Per-Fragmen

v

% Performance Profiler
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Workload Estimator

® 1. Slack Identification
® 2. Slack Distribution

® 3. Frequency & voltage level Decision

® For the first frame, an object list is created

® For each object, we store information

o the number of vertices, the number of triangles, the number
of fragments, execution time, lighting parameters, texture
parameters for each object

® For every frame completed
© Object variations are updated

® Error tolerance threshold : T
o Validates estimation and controls the error tolerance

© If the variation is larger than T, the object list is reset
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Two Layers of Slack Identification

® Inter-frame DVS

® The voltage is adjusted by a frame granularity based on the
slack times generated from the previous frame

® Intra-frame DVS
© The voltage is adjusted by an object granularity within a frame
© Intra-object & Inter-object based on slack distribution

Inter—frame
DVS Frame 1 Frame 2 Frame N

Object 2 | ~*| Object M
Intra—frame |

o
DVS !
0
.
03
.
.
-
-
o
o
.

glDrawElements()

Geometry Rasterization | ** | Geometry | Rasterization Framebuffer
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Greedy. Slack Distribution
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Object /7

Bottleneck stage

<Frequency (Voltage) level for the # object>

Object slack Frame slack
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Frame | Frame j+1
<Slack distribution>
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To _get more slacks

® Vertex caching

® Avoid repetitive transformation and lighting
calculations of the same (shared) vertices to get
more slacks
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Experimental Results

® Used a DVS-aware PDA development boar'd

® Processor : Intel Xscale PXA255

o Fr'eg ency: 7 levels between
Mhz and 400Mhz

o Voltage: 3 levels between
1.0V and 1.3V

® RAM: 64MB

©® Cache: 32 KB I$ & D%

© Display: 240*320, 16bit color, QVGA
©® OS: Embedded Linux (ver. 2.4.19)

® Power measurements done using DAQ
® OpenGL ES 1.1 based power-aware 3D library
® Test apps: Redbook samples, Facemodel, Jellyfish
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Voltage Scaling Patterns

[— CPU power |
sl
|
Mw-—\mu-uﬂlﬂll ) %m

(e "I mm::m“

Face model (10 frames) Jelly fish (10 frames)
A1 l\th‘H“l\H]l. {1 (i
624 1247 1870 2493 3116 3739 4362 4985 5608 6231 691 1381 2071 2761 3451 4141 4831 5521 6211 6901

Power Consumption
Power Consumption

Execution Time Execution Time

® Face model benefited from the vertex caching

® Less opportunities for voltage scaling in Geometry phase due to
many short slacks

—~>most voltage scalings occur in Rasterization
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Energy Consumption Comparison

Measurement of Energy & Performance

® Face model

© 47% energy saving in CPU &
43% energy saving in memory

© 46% energy saving for total
energy consumption

O CPU Energy B Memory Energy O Total Energy O Performance

® Jellyfish
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£4" energy consumption N o
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Conclusions

® Described a DVS scheme applicable to 3D graphics

® Intra-frame DVS & Inter-frame DVS based on the
application’s varying workloads

® ]Engller{\en‘red the proposed technique using OpenGL

® Achieved an energy saving of up to 46% over a
power-unaware implementation

For more information, cmpark@davinci.snu.ac.kr
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Thank you

ESTIMedia 2006




AppendixX




System Model - parameters

® Execution time of the j” frame and bottleneck stage,

for each / pipeline stage,
© C;: WCET of / pipeline stage at the maximum processor speed

® S, : state enabled or disabled by graphics feature
o Ex) glEnable(GL_LIGHT), glEnable(6L_TEXTURE_2D), glEnable(6L_DEPTH_TEST)

® N;: the iteration factor
o Ex) number of vertices, number of triangles, number of fragments, etc.

P..; : the throughput factor
o Ex) 128 bit SIMD > (x, y, z, w) / cycle(s), 4 colors / cycle(s), etc.
8 Pixel Processing Unit > 8 frgments / cycle(s), etc.

Display

Lighting
Clipping
ramebuffer

| Transformation
ing Transformation
Projection

Back Face Culling
Perspective Division
Viewport Mapping
Triangle Setup
Scan Conversion
Fragment
I Perspective Correction
I LOD Calculation
I Texture Addr Generation
Texture Filtering
Texture Blending
I Fragment Operations
| Frem

II Mode
I Viewin
Triangle
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Intra-Frame DVS

® Restate the execution time, when a scene has m
objects

® Static slacks due to bottleneck stages

© Frequency setting: F;’

“ C.S;N,
F static _ ; Pth—i _ ( F) _ j
0 " C.S 0 N io Fio _ I:Ostatlc . th—i
2 B.

i~ all
i=1 Pth—i J

where S, means all features S? are enabled,
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Intra-Frame DVS

® Dynamic slacks between objects
® Using slacks from the previous object
© Compensating the misprediction in the previous stage
© Frequency setting:

3, C,SIN
22

dynamic =0+1 i=1
F y _ =

0+1 W
> ol ot

j=1 i=1l =1 i=1 th i

where S.i means j object has all enabled features
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Inter-Frame DVS

® Dynamic slacks between frames

© The slack from the previous frame is used by the first
object in the next frame

© Frequency seTTin%: the same as in the case of dynamic
slacks between objects

® Compensating the misprediction in the previous
frame

® Since the intra-frame estimation is a conservative
approach, it cannot find all the slack times in advance

® Such unused dynamic slacks are added to the deadline
for the next frame

® If the frame rate is controlled by an application
itself, however, the inter-frame DVS has no
effect on having slack time, since we cannot start
rocessing the next scene earlier at the level of
ibrary
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Meastrement ot energy
Consumption

® Physical measurement

® Host PC : measuring the power consumption of CPU
and memory separately (through separate probes)

© DAQ/Labview: power measuring device

<Fig. Environment for Physical Measurement>
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Experimental Results
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System Model

® The execution time of the j” frame

For each /7 pipeline stage,

C,: WCET of /7 pipeline stage at the maximum processor speed
S; ' state enabled or disabled by graphics feature

N, : the iteration factor

P, - the throughput factor

® The execution time of bottleneck stage
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Intra-Frame DVS

® Restate the execution time, when a scene has m objects

® Static slacks due to bottleneck stages
© Frequency setting:

C ivi i CiSiNi
Fostatic — i=1 Pth i 2 i0 , F-O — Fstatic_( P[h—i ]

Z CiSarN; | ° Bj
ENCE

® Dynamic slacks between objects
® Using slacks from the previous object
® Compensa‘rmg 'rhe mlspredlchon in the previous stage

F dynamic __ j=0+1 |—1 —i

ot iic's"’“'N chs N}

]
ESTIMedia 20W8 = E P EACUC

where S§|| means j™ object has all enabled features
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Rasterization
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Geometry

® Different applications have different processing requirements

© Geometry-bound: a large number of vertices

© Rasterization-bound: a large number of fragments
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DVS, for Low-Power 3D Graphics

® Conceptual Diagram

Scene

— Object 1

— Face (triangle) 1

Vertex 1 (x1, y1, z1)

Vertex 2 (x2, y2, z2)

Vertex 3 (x3, y3, z3)
— Face (triangle) m

— Object n

Scene

> D
Description Display

Projection
(We]aluigle]

Back Face Culling
Clipping
Perspective Division
Viewport Mapping
Triangle Setup
Scan Conversion
Perspective Correction
LOD Calculation
Texture Filtering
Texture Blending
Fragment Operations
Framebuffer

H Viewing Transformation
H Texture Addr Generation

,L Model Transformation

asteryzation
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Texsub

Motivational Examples

O Performance B CPU Energy O Memory Energy

o O O o o
- N w A~ O

Relative Proportion

® Application Characteristics
© Geometry-limited
® Fill (Rasterization)-limited

Face model

Lighting

Culling &

Clipping

W division &
viewport

Transformation
& Projection
Setup & Scan

Conversion
Texture
Mapping
Fragment
operations
Framebuffer

@ Performance B CPU Energy O Memory Energy
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Transformation
& Projection
Lighting
Culling &
Clipping
W division &
viewport
Setup & Scan
Conversion
Texture
Mapping
Fragment
operations
Framebuffer

a. TeXSUb b Face mOdel . Pipeline Stages
<Fig. Applications> Jely fish

O Performance B CPU Energy O Memory Energy ‘

<Table. The statistics of applications features>

Application | Vertex | Triangle | Fragment | Texel access | Time(sec)
Texsub 8 4 0.161571
Face model | 4281 1427 0.806431

Jelish 1 g7 | o 060095

Relative Proportion

L
]

Texture
Mapping

Transformation
& Projection
Lighting
Culling &
Clipping
W division &
viewport
Setup & Scan
Conversion
Fragment
operations
Framebuffer

Pipeline Stages

<Fig. Performance & Energy>
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Workload variation - moving objecis

jelly fish

—e— Transformation

—=— Projection
Backface_Culling
Clipping

—— Lighting

—e— Vertex_Fog

—— Texture_Transform

—— W_division_&_Viewport_Mapping

—— Triangle_Setup
Edge_Walking
Span_Processing
Depth_Test

—<— Texture_mapping
Fog_fragment
Alpha_fragment
Stencil_fragment

—=— Blending_fragment
Logic_Op_fragment
Fragment
Framebuffer
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