

Annotation Based Multimedia Streaming Over Wireless Networks

Radu Cornea, Alex Nicolau, Nikil Dutt

Center for Embedded Computer Systems (CECS) Donald Bren School of Information and Computer Science University of California, Irvine {radu,nicolau,dutt}@ics.uci.edu

Outline

- Motivation
- Data Annotation
- System Architecture
- Our Approach
- Wireless Network
- Buffering
- MPEG Stream
- Experiments
- Results
- Related Work
- Conclusions

Motivation

- Multimedia streaming
 - Increasingly popular on mobile devices
- Network card
 - 30% of overall energy (or even higher)
 - Power optimization challenging
 - Only option: low power mode
 - Few opportunities, due to streaming

- We propose a new annotation-driven burst-type transmission that maximizes idle times
 - Between bursts network card -> low power mode
 - Improved energy savings for network interface

Data Annotation

• Types of annotations:

Data Annotation

- This paper
 - Focus on network level (wireless card)
 - Application: multimedia streaming (MPEG encoded content)
- Advantages
 - No overhead at runtime
 - More optimizations possible (better and early information)

System Architecture

Steps in Our Approach

- At server, each video stream is preprocessed
 - Annotations about bitrate is recorded in the stream
- During transmission
 - Wireless access point: intelligently schedules bursts for each client separately
 - Client network interface: improved buffering mechanism
 - \diamond Ensures data is always available when the decoder requests it
 - Decision for filling up the buffer is based on annotations
 - $\diamond\,$ Reduced buffer size with minimal or no frame loss
- At runtime
 - Video decoder parses the MPEG stream
 - Reads packets from network interface as required
 - Content is presented to the user

Preprocessing and Annotation

- Actions:
 - Collect packet consumption rates (size, time)
 - Add annotations to stream

Wireless Network

- IEEE 802.11 Protocol
 - Built-in power management (PSM)
 - Originally intended for sporadic data transfer
 - Rendezvous approach
 - Periodic (100ms) beacons
 - \diamond Can go to low power (sleep) mode between beacons, if no data
 - Sub-optimal power performance for streaming
 - Requires continuous, periodic data transfer
- Solutions:
 - Traffic shaping mechanism [Surendar 2002]
 - \diamond Traffic buffered into larger bursts, history-based prediction
 - \diamond Packet drops occur when prediction proves wrong
 - Network card switched into low power mode when idle
 - Annotation-based mechanism
 - \diamond Similar to above, uses annotations for higher accuracy
 - ♦ No frame loss (or minimal)

Buffer Management

- Buffering required
 - Stores content sent in bursts
 - Simple algorithm for refilling
 - $\diamond\,\text{Min},\,\text{max}$ thresholds
 - \diamond When empty, requests burst transmission from server

- Original stream: frames are not grouped
- Modified stream: burst transmission, longer idle times

Buffer Sizing

- Tradeoff
 - Too small

 \diamond shorter idle periods, higher packet drop rates

- Too large

 \diamond longer delays

Chose 64Kb based on experiments

- No significant gains going higher

MPEG Stream Format

- Hierarchical organization
 - Data consumption very regular
 - Annotations describe patterns (size, time)

Relatively small overhead (bytes vs tens of Kb)

Pack Pack Program Pack 1 Pack 2 Header Header End Code ... Various Header Control Control Audio Video ... Fields PES 1 PES 1 PES PES Video Sequence GOP GOP IBBPBBP Picture Macroblock Block Slice (8x8) ٠. MPEG

MPEG Program Stream

Stream

MPEG Packet Arrival

- Profiling results
 - Packet size distribution multiples of 2Kb
 - Arrival time averages around multiples of 40ms
 - Few opportunities for IEEE 802.11 power management (100ms)
 - Regular behavior due to MPEG packetization and frame rates

Experimental Setup

Experiments Performed

- First step: profiled and annotated all media clips
- Next: multimedia streaming
 - Measured energy savings and drop rates
- Variable buffer size: 16 Kb 128 Kb
 - Studied the effect on energy savings and packet drop rates
- Dynamic scenes effect on energy and drop rate
 - Mostly dynamic clips vs mostly still clips
- Baseline for energy comparisons
 - Default IEEE 802.11 power saving mode (PSM)

Energy Savings (1)

Video Clips

Energy Savings (2)

Video Clips

16

Energy Savings and Drop Rates

		Energy Savings (%)				Package Drop (%)				
	Video Clip	16Kb	32Kb	64Kb	128Kb	16Kb	32Kb	64Kb	128Kb	
	catwoman	60.01	62.24	63.27	63.79	1.80	0.00	0.00	0.00	
	405themovie	68.95	70.27	70.96	71.31	4.32	0.50	0.00	0.00	
	blockbuster	66.20	67.77	68.55	68.95	0.00	0.00	0.00	0.00	
	ep2_clone	70.72	72.01	72.60	72.92	0.00	0.00	0.00	0.00	
	episodelll	63.83	65.61	66.47	66.93	1.38	0.00	0.00	0.00	
	getinspired	62.50	64.38	65.34	65.82	4.49	0.00	0.00	0.00	
	grimm	63.50	65.29	66.20	66.65	0.87	0.00	0.00	0.00	
	hellweek	67.21	68.75	69.50	69.88	1.59	0.00	0.00	0.00	
	gobletoffire	66.13	67.72	68.51	68.93	1.47	0.00	0.00	0.00	
	hunter	71.43	72.62	73.20	73.50	0.00	0.00	0.00	0.00	
	iceage2	60.68	62.68	63.68	64.18	2.67	0.00	0.00	0.00	
	ice_age	60.19	62.13	63.25	63.78	5.66	0.00	0.00	0.00	
	i robot	54 80	57 28	58 60	59 21	8 75	0 00	0 00	0 00	
mon	74.5	5 75	.50	75.97	76.1	8	0.00	0.00	0	.00 0.00
	king_kong	58.64	60.80	61.91	62.45	2.00	0.29	0.00	0.00	Static scopes
	meeting_agnus	72.56	73.73	74.28	74.56	0.28	0.00	0.00	0.00	Static Scenes
	officexp	59.78	61.92	63.02	63.60	10.17	0.00	0.00	0.00	
	returnoftheking	65.13	66.85	67.67	68.10	1.11	0.00	0.00	0.00	
	sallyangela	58.31	60.82	61.92	62.46	0.14	0.00	0.00	0.00	
	vaio	69.19	70.66	71.33	71.66	0.00	0.00	0.00	0.00	
	saturday	66.84	68.36	69.11	69.51	1.24	0.00	0.00	0.00	
k2	55.1	6 57	7.44	58.76	59.4	41 2	2.99	0.57	0	.00 0.00
	spaceodulty	54.40	T T. TZ	F 1.70	TZ.10	3.21	1.70	0.00	0.00	
	spiderman2	54.49	57.00	58.32	58.95	10.01	0.00	0.00	0.00	Dynamic scenes
	incredibles	56.22	58.61	59.84	60.44	9.55	0.00	0.00	0.00	
	timescape	71.87	73.07	73.63	73.92	0.61	0.00	0.00	0.00	
	underground	70.11	71.33	71.96	72.29	0.00	0.00	0.00	0.00	
	wronglanding	68.91	70.37	71.07	71.43	1.37	0.00	0.00	0.00	
	zeroonezero	60.17	62.24	63.32	63.83	4.87	0.00	0.00	0.00	

Analysis of Results

- 60-75% savings over the default power management in IEEE 802.11 (PSM)
- Very little increase over 64Kb
 - Smaller buffer may determine packet drops
- Clips with smaller packets perform best
 - Even for smaller buffer size
- Compared with previous results (Surendar et al.)
 - Similar energy savings
 - No packet drops over 64Kb buffer size
 - Prediction mechanism up to 50% drop rate in the worst case
 - No decrease in video quality
 - Both are susceptible to network transmission errors

Related Work

- Image transcoding
 - Mesdat Group [2003], Chandra et al. [1999]
 - Still images (not applicable on video)
- Bandwidth reduciton
 - Tripathy et al. [2001]
 - Different goal (reduce bandwidth)
- Traffic reshaping
 - Chandra et al. [2002-2004], Wei et al. [2004]
 - Prediction mechanism, susceptible to frame loss
 - Our approach based on annotations (more accuracy)
- Application-based network tuning
 - Anand et al. [2005]
 - Different applications, not for one application

Conclusions

- Improved power management for network interface
- Annotation prove useful to improve accuracy
 - At server/access point
 - $\diamond\, \textsc{Bursts}$ based on consumption rate
 - At client side
 - Buffer management
 - Better power savings
 - Zero or minimal frame loss

- Improved packet drop rate compared with previous approaches
- Future work:
 - Study network conditions and their effect on burst transmission
 - Impact of other clients on the wireless transfers

 Network contention

Thank You!