High-Level Power Management of Audio Power Amplifiers for Portable Multimedia Applications

Kyungsoo Lee, Youngjin Cho
and Naehyuck Chang

CSE, Seoul National University, Korea
Outline

- Introduction
- Background
 - Measurement setup
 - Loudspeaker characteristics
 - Audio power amplifiers characteristics
- Loudspeaker-aware low-power filtering
- Experimental results
- Conclusions
Modern portable multimedia devices have high-quality displays and provide high-fidelity audio output.
Related work

 - Power-quality trade-off
 - A low-power MPEG decoder

 - Power-quality trade-off
 - Reducing the bandwidth of the audio signal

- Previous high-level power reduction technique for audio subsystems
 - Focus on reducing the audio processing
 - Did not consider the audio power amplifier, which is the most part of the audio power consumption
In-house platform for the audio power amplifier power management
- Class-AB: TPA0222PWP
- Class-D: TPA2000D2PWPR
- Differential amplifier: Burr-Brown PGA204BU
Measurement Setup

- Logging the current and the voltage
 - Intelligent Instrument UDAS1001E USB data acquisition system
 - Fluke 87V trueRMS digital multimeter
 - TDS3052B Tektronix digital storage oscilloscope (500MHz and 5GS/s)

- SPL (Sound Pressure Level) measurement
 - To be free from ambient interference
 - Measured at night in remote desert area
 - Extremely quiet and superior to standard closed acoustic chamber
 - Audio-Technica AT4040 high-performance condenser microphone
 - Sound ranging from 20Hz to 20KHz with a fairly flat frequency response
 - Extech407730 sound pressure lever meter
Characteristics

- Loudspeaker
- Audio power amplifier
Characteristics: Loudspeakers

- Structure of a magnetic loudspeaker
 - The other types are rarely found in portable applications

- The voice coil is the only electric component
Characteristics: Loudspeakers

- Voice coil
 - Inductor with a non-zero resistance
- Resonant behavior of the loudspeaker
 - If the frequency of the voltage across the voice coil matches the resonant frequency of the cone and voice coil, the loudspeaker exhibits its resonant impedance
Characteristics: Loudspeakers

- Loudspeaker units

<table>
<thead>
<tr>
<th></th>
<th>GC0301K</th>
<th>GC0351P-1</th>
<th>GC0401S</th>
<th>GF0668</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>16mm X 30mm</td>
<td>16mm X 35mm</td>
<td>20mm X 40mm</td>
<td>66mm X 66mm</td>
</tr>
<tr>
<td>SPL</td>
<td>77dB</td>
<td>82dB</td>
<td>89dB</td>
<td>90dB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>500 Hz~4 KHz</td>
<td>630 Hz~13 KHz</td>
<td>550 Hz~12 KHz</td>
<td>300 Hz~20 KHz</td>
</tr>
</tbody>
</table>

- SPL: 0.5 meter distance measurement (from data sheets)
Characteristics: Loudspeakers

- The resonant region
 - Power amplifier consumes the least power
 - The SPL is the highest
- Below the resonant region
 - No audible sound output (for the same input amplitude)
 - The region with the lowest impedance, because of the inductive negligible reactance
- Linear region
 - The resonant effect decreases
- Beyond the linear region
 - No audible sound output
 - The power consumption in this upper region is much smaller than that in the region below the resonant region
Characteristics: Loudspeakers

- Resonant region
- Below the resonant region
- Linear region
- Beyond the linear region

![Graphs showing loudspeaker characteristics](image)

- **V**: Speaker RMS voltage
- **S**: Sound pressure level (SPL) @ C weighting
- **Ω**: Speaker impedance
- **A**: Speaker RMS current
Characteristics: Amplifiers

Audio power amplifiers

- **Class-A**
 - The least distortion and the most linear
 - Bias current flowing to the output at all times
 - The most wasteful power consumption (about 20% efficiency)

- **Class-C, class-E and class-F**
 - Non-linear amplifiers
 - The most power efficient design (over 90% efficiency)
 - Designed for high frequency radio signals (not for audio applications)

- **Class-AB**
 - Combines advantages of the class-A and class-B amplifiers
 - In place of the class-B amplifier
 - Most common type of power amplifiers

- **Class-D**
 - Converts audio signals into pulse width modulated signals
 - Significantly reduces the power loss
Characteristics: Amplifiers

- **Power efficiency of an audio power amplifier**

 \[\eta_A = \frac{P_L}{P_A} \]

 where,

 - \(P_L \): the power consumed by the loudspeaker
 - \(P_A \): the power consumed by the power amplifier
 - \(\eta_A \): the efficiency of the power amplifier

- **Measured power amplifier efficiency**
 - **Class-AB: TPA0222PWP**
 - Significantly varies with the output power
 - 100mW @1KHz output: 20%
 - 1W @1KHz output: 40%
 - **Class-D: TPA2000D2PWPR**
 - Near uniform efficiency over the wide range of the output power
 - 100mW @1KHz output: 64.5%
 - 1W @1KHz output: 67.8%
Loudspeaker-Aware Low-power Filtering

- **Power waste**
 - Modern portable systems play high-fidelity digital audio source (20Hz~22KHz)
 - Miniature loudspeakers have quite a narrow bandwidth
 - Thus, the power amplifier wastes a significant amount of power in driving loudspeaker, but produces no sound
 - Especially in the range from 20Hz to near the resonant frequency, the waste amount of the total amplifier power consumption is around 20%~40%
Loudspeaker-Aware Low-power Filtering

- Power efficiency of the SPL

\[\eta_S(f) = \frac{S(f)}{P_A(f)} = \eta_A \frac{S(f)}{P_L(f)} \]

where,
- \(S(f) \): the SPL at the input signal frequency \(f \)
- \(P_L(f) \): the power consumed by the loudspeaker
- \(P_A(f) \): the power consumed by the power amplifier
- \(\eta_A \): the efficiency of the power amplifier

- \(\eta_S \) is independent of the input signal amplitude
- Filtering with cut-off frequency determined by \(\eta_S \)
Loudspeaker-Aware Low-power Filtering

- The built-in miniature loudspeakers
 - Loudspeaker-aware low-power filtering is activated

- The headphone
 - Headphones offer far better bandwidth performance
 - Higher impedance (an order of magnitude higher impedance than the loudspeakers) allows lower power consumption in the power amplifier
 - No filtering

- The external speakers
 - External power sources are often available as well
 - No filtering in this case
Experimental Results

- Three different types of sound sources
 - Movie sound track
 - A beautiful mind
 - Pop music
 - Abba, Lay all your love on me
 - Classic music
 - Beethoven Symphony No.5 in c minor

- Using an iPod shuffle as a player

- Cut-off frequencies for the low-power filtering
 - Determined by η_s : select the threshold value
 - GF0668: 200Hz
 - GC0401S: 500Hz
 - GC0351P-1: 600Hz
 - GC0301K: 600Hz
Experimental Results

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Loudspeaker</th>
<th>Cut-off frequency</th>
<th>SNR (dB)</th>
<th>Power saving: mW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
<td>Movie</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>33.0</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>35.4</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.5</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>31.2</td>
</tr>
<tr>
<td>Class-D</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>31.8</td>
</tr>
<tr>
<td>Class-D</td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>34.7</td>
</tr>
<tr>
<td>Class-D</td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>36.2</td>
</tr>
<tr>
<td>Class-D</td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Loudspeakers are sorted by this order.
Experimental Results

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Loudspeaker</th>
<th>Cut-off frequency</th>
<th>SNR (dB)</th>
<th>Power saving: mW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
<td>Movie</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>31.2</td>
</tr>
<tr>
<td>Class-D</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.9</td>
</tr>
</tbody>
</table>

- **average power consumption = 305 mW**
- **average power consumption = 142 mW**

- Audio power output for the experimental setup
 - Maximum peak output around 1W
 - Wide dynamic ranges of the sound sources limit the average audio output at a few hundred mW
 - The class-AB consumes more power than class-D
Experimental Results: SNR

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Loudspeaker</th>
<th>Cut-off frequency</th>
<th>SNR (dB)</th>
<th>Power saving: mW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
<td>Movie</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>31.2</td>
</tr>
<tr>
<td>Class-D</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Since the classic music contains wider range of frequency spectrums,

![Bar chart showing SNR for different amplifiers and loudspeakers](image)

- **Class-AB**
- **Class-D**
Experimental Results: Power Saving

<table>
<thead>
<tr>
<th>Amplifier</th>
<th>Loudspeaker</th>
<th>Cut-off frequency</th>
<th>SNR (dB)</th>
<th>Power saving: mW (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>High</td>
<td>Movie</td>
</tr>
<tr>
<td>Class-AB</td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td>GF0668</td>
<td>200 Hz</td>
<td>N/A</td>
<td>31.8</td>
</tr>
<tr>
<td></td>
<td>GC0401S</td>
<td>500 Hz</td>
<td>N/A</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>GC0351P-1</td>
<td>600 Hz</td>
<td>N/A</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>GC0301K</td>
<td>600 Hz</td>
<td>N/A</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Graphs
- **Class-AB**
- **Class-D**

The graphs show the power saving in different modes (Movie, Pop, Classic) for both Class-AB and Class-D amplifiers, with various loudspeakers (GF0668, GC0401S, GC0351P-1, GC0301K). Power saving is measured as a percentage, with distinct bars for each amplifier type and speaker model.
Conclusions

- Audio power amplifiers are primary power consumers of portable multimedia systems
 - So far, previous work focused on the audio signal processing power

- The proposed technique can save 20% to 35% of audio amplifier power consumption without any appreciable degradation of sound fidelity
 - Cutting off input signals below the resonant region

Future work
- Context-based filtering
 - Use different cut-off frequencies by the type of sound sources automatically
Q&A

- Demo will be shown in next poster session