ESTIMedia, Seoul, Korea Oct. 26, 2006

High-Level Power Management of Audio Power Amplifiers for Portable Multimedia Applications

Kyungsoo Lee, Youngjin Cho

and Naehyuck Chang

CSE, Seoul National University, Korea

Seoul National University

Outline

- Introduction
- Background
 - Measurement setup
 - Loudspeaker characteristics
 - Audio power amplifiers characteristics
- Loudspeaker-aware low-power filtering
- Experimental results
- Conclusions

Introduction

 Modern portable multimedia devices have high-quality displays and provide high-fidelity audio output

IPAQ360 PDA (MP3 player application)

Portable DVD player with 7" LCD

Related work

- M. Mesarina and Y. Turner, *Multimedia systems*, 2003.
 - Power-quality trade-off
 - A low-power MPEG decoder
- S. Chakraborty and et al., *ESTIMedia*, 2005.
 - Power-quality trade-off
 - Reducing the bandwidth of the audio signal

- Previous high-level power reduction technique for audio subsystems
 - Focus on reducing the audio processing
 - Did not consider the audio power amplifier, which is the most part of the audio power consumption

Measurement Setup

- In-house platform for the audio power amplifier power management
 - Class-AB: TPA0222PWP
 - Class-D: TPA2000D2PWPR
 - Differential amplifier: Burr-Brown PGA204BU

Measurement Setup

- Logging the current and the voltage
 - Intelligent Instrument UDAS1001E USB data acquisition system
 - Fluke 87V trueRMS digital multimeter
 - TDS3052B Tektronix digital storage oscilloscope (500MHz and 5GS/s)
- SPL (Sound Pressure Level) measurement
 - To be free from ambient interference
 - Measured at night in remote desert area
 - Extremely quiet and superior to standard closed acoustic chamber
 - Audio-Technica AT4040 high-performance condenser microphone
 - Sound ranging from 20Hz to 20KHz with a fairly flat frequency response
 - Extech407730 sound pressure lever meter

Loudspeaker

• Audio power amplifier

- Structure of a magnetic loudspeaker
 - The other types are rarely found in portable applications

The voice coil is the only electric component

- Voice coil
 - Inductor with a non-zero resistance
- Resonant behavior of the loudspeaker
 - If the frequency of the voltage across the voice coil matches the resonant frequency of the cone and voice coil, the loudspeaker exhibits its resonant impedance

Loudspeaker units

	GC0301K	GC0351P-1	GC0401S	GF0668
Size	16mm X 30mm	16mm X 35mm	20mm X 40mm	66mm X 66mm
SPL	77dB	82dB	89dB	90dB
Bandwidth	500 Hz~4 KHz	630 Hz~13 KHz	550 Hz~12 KHz	300 Hz~20 KHz

• SPL: 0.5 meter distance measurement (from data sheets)

The resonant region

- Power amplifier consumes the least power
- The SPL is the highest

Below the resonant region

- No audible sound output (for the same input amplitude)
- The region with the lowest impedance, because of the inductive negligible reactance
- Linear region
 - The resonant effect decreases
- Beyond the linear region
 - No audible sound output
 - The power consumption in this upper region is much smaller than that in the region below the resonant region

Characteristics: Amplifiers

- Audio power amplifiers
 - Class-A
 - o The least distortion and the most linear
 - Bias current flowing to the output at all times
 - The most wasteful power consumption (about 20% efficiency)
 - Class-C, class-E and class-F
 - Non-linear amplifiers
 - The most power efficient design (over 90% efficiency)
 - Designed for high frequency radio signals (not for audio applications)
 - Class-AB
 - Combines advantages of the class-A and class-B amplifiers
 - In place of the class-B amplifier
 - Most common type of power amplifiers
 - Class-D
 - Converts audio signals into pulse width modulated signals
 - Significantly reduces the power loss

Characteristics: Amplifiers

• Power efficiency of an audio power amplifier

$$\eta_A = \frac{P_L}{P_A}$$

where,

 $\boldsymbol{P}_L\!\!:$ the power consumed by the loudspeaker

 $\boldsymbol{P}_{\boldsymbol{A}}\!\!:$ the power consumed by the power amplifier

 $\eta_{A:}$ the efficiency of the power amplifier

Measured power amplifier efficiency

- Class-AB: TPA0222PWP
 - o Significantly varies with the output power
 - o 100mW @1KHz output: 20%
 - o 1W @1KHz output: 40%
- Class-D: TPA2000D2PWPR
 - Near uniform efficiency over the wide range of the output power
 - o 100mW @1KHz output: 64.5%
 - o 1W @1KHz output: 67.8%

Loudspeaker-Aware Low-power Filtering

- Power waste
 - Modern portable systems play high-fidelity digital audio source (20Hz~22KHz)
 - Miniature loudspeakers have quite a narrow bandwidth
 - Thus, the power amplifier wastes a significant amount of power in driving loudspeaker, but produces no sound
 - Especially in the range from 20Hz to near the resonant frequency, the waste amount of the total amplifier power consumption is around 20%~40%

Loudspeaker-Aware Low-power Filtering

Power efficiency of the SPL

$$\eta_{S}(f) = \frac{S(f)}{P_{A}(f)} = \eta_{A} \frac{S(f)}{P_{L}(f)}$$

where,

S(f): the SPL at the input signal frequency f $P_L(f)$: the power consumed by the loudspeaker $P_A(f)$: the power consumed by the power amplifier η_A : the efficiency of the power amplifier

- η_s is independent of the input signal amplitude
- Filtering with cut-off frequency determined by η_s

Loudspeaker-Aware Low-power Filtering

• The built-in miniature loudspeakers

• Loudspeaker-aware low-power filtering is activated

The headphone

- Headphones offer far better bandwidth performance
- Higher impedance (an order of magnitude higher impedance than the loudspeakers) allows lower power consumption in the power amplifier

• No filtering

- The external speakers
 - External power sources are often available as well
 - No filtering in this case

Experimental Results

Three different types of sound sources

- Movie sound track
 - A beautiful mind
- Pop music
 - o Abba, Lay all your love on me
- Classic music
 - Beethoven Symphony No.5 in c minor
- Using an iPod shuffle as a player
- Cut-off frequencies for the low-power filtering
 - Determined by η_s : select the threshold value
 - GF0668: 200Hz
 - GC0401S: 500Hz
 - GC0351P-1: 600Hz
 - GC0301K: 600Hz

Experimental Results

Amplifier	Loudspoakor	Cut-off free		SNR (dB)		Power saving: mW (%)			
	Loudspeaker	Low	High	Movie	Рор	Classic	Movie	Рор	Classic
	GF0668	200 Hz	N/A	33.0	42.6	33.6	19.5 (6.4%)	63.0 (15.9%)	17.5 (5.5%)
Class-AB	GC0401S	500 Hz	N/A	35.4	33.1	26.3	60.5 (20.5%)	87.5 (22.6%)	55.0 (17.9%)
	GC0351P-1	600 Hz	N/A	33.5	33.6	24.4	65.0 (22.4%)	86.5 (22.9%)	66.0 (21.9%)
	GC0301K	600 Hz	N/A	31.2	31.0	20.2	63.0 (21.8%)	85.0 (22.7%)	63.0 (21.2%)
Class-D	GF0668	200 Hz	N/A	31.8	43.4	36.1	9.5 (6.7%)	54.4 (26.6%)	8.5 (5.9%)
	GC0401S	500 Hz	N/A	34.7	35.2	26.0	24.0 (18.0%)	66.5 (33.7%)	26.0 (19.4%)
	GC0351P-1	600 Hz	N/A	36.2	34.9	24.2	25.5 (19.4%)	67.0 (34.7%)	31.5 (23.9%)
	GC0301K	600 Hz	N/A	33.9	32.1	20.5	24.0 (18.3%)	65.0 (33.9%)	30.0 (22.9%)

Loudspeakers are sorted by this order

Experimental Results

Amplifier	Loudenaakar	Cut-off frequency			SNR (dB)		Power saving: mW (%)			
	Loudspeaker	Low	High	Movie	Рор	Classic	Movie	Рор	Classic	
	GF0668	200 Hz	N/A	33.0	42.6	33.6	19.5 (6.4%)	63.0 (15.9%)	17.5 (5.5%)	
Class-AB	GC0401S	500 Hz	N/A	35.4	33.1	26.3	60.5 (<mark>2</mark> .5%)	87.5 (22.6%)	55.0 (17.9%)	
	GC0351P-1	600 Hz	N/A	33.5	average power consumption = 305 mW					
	GC0301K	600 Hz	N/A	31.2						
	GF0668	200 Hz	N/A	31.8	43.4	36.1	9.5 (6.7%)	54.4 (26.6%)	8.5 (5.9%)	
Class-D	GC0401S	500 Hz	N/A	34.7	35.2	26.0	24.0 8.0%)	66.5 (33.7%)	26.0 (19.4%)	
Class-D	GC0351P-1	600 Hz	N/A	36.2	2/1 0	24.2	25 5 (10 /%)	67 0 (34 7%)	21 5 (22 9%)	
	GC0301K	600 Hz	N/A	33.9	avera	age pov	wer consum	ption = 14	2 mW _{9%)}	

Audio power output for the experimental setup

- Maximum peak output around 1W
- Wide dynamic ranges of the sound sources limit the average audio output at a few hundred mW
- The class-AB consumes more power than class-D

Experimental Results: SNR

Amplifier	Loudenoakor	Cut-off free	quency		SNR (dB)		P	ower saving: mW (%	6)
Ampimer	Loudspeaker	Low	High	Movie	Рор	Classic	Movie	Рор	Classic
Class-AB	GF0668	200 Hz	N/A	33.0	42.6	33.6	19.5 (6.4%)	63.0 (15.9%)	17.5 (5.5%)
	GC0401S	500 Hz	N/A	35.4	33.1	26.3	60.5 (20.5%)	87.5 (22.6%)	55.0 (17.9%)
	GC0351P-1	600 Hz	N/A	33.5	33.6	24.4	65.0 (22.4%)	86.5 (22.9%)	66.0 (21.9%)
	GC0301K	600 Hz	N/A	31.2	31.0	20.2	63.0 (21.8%)	85.0 (22.7%)	63.0 (21.2%)
	GF0668	200 Hz	N/A	31.8	43.4	36.1	9.5 (6.7%)	54.4 (26.6%)	8.5 (5.9%)
Class-D	GC0401S	500 Hz	N/A	34.7	35.2	26.0	24.0 (18.0%)	66.5 (33.7%)	26.0 (19.4%)
Class-D	GC0351P-1	600 Hz	N/A	36.2	34.9	24.2	25.5 (19.4%)	67.0 (34.7%)	31.5 (23.9%)
	GC0301K	600 Hz	N/A	33.9					30.0 (22.9%)
45.0 40.0 35.0 30.0		Class-AB		 GF0668 GC0401 GC0351 GC0301 	CC f	ontains Treque	wider ran ncy spectr	ums 🗧	GF0668 GC0401S GC0351P-1 GC0301K
30.0 (fg) 25.0 20.0 15.0 10.0 5.0 0.0	Movie	Pop		Classic		.0		Pop	Classic

Experimental Results: Power Saving

Amplifier	Loudspeaker	Cut-off free	quency	SNR (dB)			Power saving: mW (%)		
		Low	High	Movie	Рор	Classic	Movie	Рор	Classic
Class-AB	GF0668	200 Hz	N/A	33.0	42.6	33.6	19.5 (6.4%)	63.0 (15.9%)	17.5 (5.5%)
	GC0401S	500 Hz	N/A	35.4	33.1	26.3	60.5 (20.5%)	87.5 (22.6%)	55.0 (17.9%)
	GC0351P-1	600 Hz	N/A	33.5	33.6	24.4	65.0 (22.4%)	86.5 (22.9%)	66.0 (21.9%)
	GC0301K	600 Hz	N/A	31.2	31.0	20.2	63.0 (21.8%)	85.0 (22.7%)	63.0 (21.2%)
Class-D	GF0668	200 Hz	N/A	31.8	43.4	36.1	9.5 (6.7%)	54.4 (26.6%)	8.5 (5.9%)
	GC0401S	500 Hz	N/A	34.7	35.2	26.0	24.0 (18.0%)	66.5 (33.7%)	26.0 (19.4%)
	GC0351P-1	600 Hz	N/A	36.2	34.9	24.2	25.5 (19.4%)	67.0 (34.7%)	31.5 (23.9%)
	GC0301K	600 Hz	N/A	33.9	32.1	20.5	24.0 (18.3%)	65.0 (33.9%)	30.0 (22.9%)

Conclusions

- Audio power amplifiers are primary power consumers of portable multimedia systems
 - So far, previous work focused on the audio signal processing power
- The proposed technique can save 20% to 35% of audio amplifier power consumption without any appreciable degradation of sound fidelity

• Cutting off input signals below the resonant region

- Future work
 - Context-based filtering
 - Use different cut-off frequencies by the type of sound sources automatically

• Demo will be shown in next poster session