
Democritus University of Thrace - VLSI Design and Testing Center 1

An Estimation Methodology for Designing
Instruction Cache Memory

of Embedded Systems

Nikolaos Kroupis, Stylianos Mamagkakis, and Dimitrios Soudris

Department of Electrical and Computer Engineering,
Democritus University of Thrace, Xanthi, Greece

The project is co-funded by the European Social Fund & National Resources - EPEAEK II - PYTHAGORAS II

Democritus University of Thrace - VLSI Design and Testing Center 2

Presentation Outline

Instruction caches & processor
performance
Instruction cache assumptions
The proposed estimation methodology of
the number of executed instructions and
the number of cache misses
The implemented estimation software tool
Experimental results and comparison study
Conclusions and future work

Democritus University of Thrace - VLSI Design and Testing Center 3

Cache and Memory Performance

Average Memory Access Time = Hit time + Miss rate x Miss penalty

Improving memory hierarchy performance:
Decrease hit time (IC Technology)
Decrease miss rate (Application Software)
Decrease miss penalty (IC Technology)

Miss Rate

0

20

40

60

80

100

120

64 128 256 512 1024 2048 4096

Cache Memory Size (bytes)
M

is
s R

at
e

(%
)

Democritus University of Thrace - VLSI Design and Testing Center 4

Cache Miss Rate Measurements

Embedded Processor Core Instruction Set
Simulator is needed
Most Instruction Set simulators do not
include Cache simulator
Cache simulation is a time consuming
procedure
Cache miss rate exploration to find the best
cache size and parameters needs days of
simulation

Democritus University of Thrace - VLSI Design and Testing Center 5

Loop Size & Cache Miss Rate (Type 1)

sB
sLmissesNum

_
__ =

Num_misses : Number of instruction misses
L_s : Loop Size in number of instructions
B_s : Instruction cache block size

Democritus University of Thrace - VLSI Design and Testing Center 6

Loop Size & Cache Miss Rate (Type 2)

Loop Type 2 : C_s < L_s < 2*C_s

3 Conflict
Misses

L_s = 6 instr.
INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

INSTRUCTION 5

C_s = 4 instr.
INSTRUCTION 1 / 5

INSTRUCTION 2

INSTRUCTION 3

INSTRUCTION 4

()
sB

sCsLN
sB
sLmissesNum

_
_mod_21

_
__ ××−+=

Num_misses : Number of instruction misses
L_s : Loop Size in number of instructions
B_s : Instruction cache block size
N : Number of loop iterations
C_s : Cache size

Democritus University of Thrace - VLSI Design and Testing Center 7

Loop Size & Cache Miss Rate (Type 3)

sB
sLNmissesNum

_
__ ×=

Num_misses : Number of instruction misses
L_s : Loop Size in number of instructions
B_s : Instruction cache block size
N : Number of loop iterations

Democritus University of Thrace - VLSI Design and Testing Center 8

Instruction Cache Miss Rate

referencesNum
missesNumrateMiss

_
__ =

N
sB
sLreferencesNum ×=

_
__

Num_misses : Number of instruction misses
Num_references : Number of Memory references
L_s : Loop Size in number of instructions
B_s : Instruction cache block size
N : Number of loop iterations

Democritus University of Thrace - VLSI Design and Testing Center 9

The Proposed Methodology

Democritus University of Thrace - VLSI Design and Testing Center 10

The Proposed Methodology: 1st Stage

Results after code execution

Branch 1 :
 Type : loop
 Counter 1: 10 executions
Branch 2 :
 Type : if
 Counter 2: 3 executions

Output

Step 2 : Counter insertion
Step 3 : Code executions

 for(i=0;i<10;i++)
 {
 counter[1]++;
 if(i<3)
 {
 counter[2]++;
 a=a-i;
 }
 else
 {
 a=a+i;
 }
 }

Counter Insertion

Step 1 : Pinpoint the
code branches

 for(i=0;i<10;i++)
 {
 if(i<3)
 a=a-i;
 else
 a=a+i;
 }

Input: C code
Branch 1

Branch 2

Democritus University of Thrace - VLSI Design and Testing Center 11

The Proposed Methodology: 2nd Stage
2nd

 S
ta

ge

(a)

Results after code execution

Branch 1 :
 Type : loop
 Counter 1: 10 executions
Branch 2 :
 Type : if
 Counter 2: 3 executions

Output

Step 2 : Counter insertion
Step 3 : Code executions

 for(i=0;i<10;i++)
 {
 counter[1]++;
 if(i<3)
 {
 counter[2]++;
 a=a-i;
 }
 else
 {
 a=a+i;
 }
 }

Counter Insertion

Step 1 : Pinpoint the
code branches

 for(i=0;i<10;i++)
 {
 if(i<3)
 a=a-i;
 else
 a=a+i;
 }

Input: C code
Branch 1

Branch 2

1st
 S

ta
ge

{1st iteration → Node 4}

{2nd iteration → Node 6}

{3rd iteration → Node 1}

{4th iteration → Node 2}
7

10

11

1 10

3

Democritus University of Thrace - VLSI Design and Testing Center 12

The Proposed Methodology: 3rd Stage

Step 1 : Extract all the unique
execution paths of assembly code
loops.

3

11

10

10

1st unique path
3 iterations

$L2:
 lw $2,16($fp)
 slt $3,$2,10
 bne $3,$0,$L5
$L5:
 lw $2,16($fp)
 slt $3,$2,3
 beq $3,$0,$L6
$L6:
 lw $2,20($fp)
 lw $3,16($fp)
 addu $2,$2,$3
 sw $2,20($fp)
$L4:
 lw $3,16($fp)
 addu $2,$3,1
 move $3,$2
 sw $3,16($fp)
 j $L2
$L1:

2nd unique path
7 iterations

11

10

7

10

$L2:
 lw $2,16($fp)
 slt $3,$2,10
 bne $3,$0,$L5
$L5:
 lw $2,16($fp)
 slt $3,$2,3
 beq $3,$0,$L6
 lw $2,20($fp)
 lw $3,16($fp)
 subu $2,$2,$3
 sw $2,20($fp)
 j $L4
$L4:
 lw $3,16($fp)
 addu $2,$3,1
 move $3,$2
 sw $3,16($fp)
 j $L2
$L1:

MIPS IV 64 bits
1 instr. = 8 bytes

Unique Path 1 :
Consists of : 15 instr.
Size : 120 bytes
Iterations : 3

Unique Path 2 :
Consists of : 16 instr.
Size : 128 bytes
Iterations :7

Step 2 : Computation
of # of instructions
and # iterations of
each execution path

Output : Number of
instruction cache misses and
miss rate

Direct Mapped Cache with
Block Size 8 bytes:
Using Equations (1)-(5) for
variable cache sizes:
Num_References = 157

Cache Size: 32 bytes
Num_Misses1 = 45
Num_Misses2 = 112
Miss rate = 100%

Cache Size: 64 bytes
Num_Misses1 = 42
Num_Misses2 = 112
Miss rate = 98%

Cache Size: 128 bytes
Num_Misses1 = 15
Num_Misses2 = 16
Miss rate = 20%

Cache Size: 256 bytes
Num_Misses1 = 15
Num_Misses2 = 16
Miss rate = 20%

Output

(c)

Node 1

Node 3

Node 5

Node 6

Node 1

Node 3

Node 4

Node 6

Democritus University of Thrace - VLSI Design and Testing Center 13

FICA Software Tool

Fast Instruction Cache Analyzer (FICA)

Web based Tool
PHP Language
MySQL Database
MIPS IV Architecture with compiler gcc
2.7.2
Estimate the number of execution
instructions, the number of instruction
cache misses and the miss rate
Extract the critical part of the application
which give high miss rate

Democritus University of Thrace - VLSI Design and Testing Center 14

Number of Executed Instructions

Benchmark C Code Size
(bytes)

Simplescalar
(#instructions)

FICA
(#instructions) % Error

FS 1,625 1,138,860,504 1,135,823,110 0.26 %
HS 7,009 37,792,750 36,736,600 2.79 %
3SLOG 3,381 46,717,535 45,865,486 1.82 %
PHODS 3,372 70,865,874 69,375,838 2.10 %
SS 2,587 590,420,249 589,448,105 0.16 %
Wavelet 22,380 39,507,821 39,993,202 1.23 %
Cavity Detector 2,634 18,957,657,996 18,351,605,412 3.19 %
CQ 11,215 6,133,172,759 6,299,874,815 0.26 %
FFT 2,681 687,624 620,154 9.81 %

Democritus University of Thrace - VLSI Design and Testing Center 15

Number of Instruction Cache Misses

Democritus University of Thrace - VLSI Design and Testing Center 16

Estimation vs. Simulation Time

Simpescalar FICA Speed Up

FS 2.278 0.9 2,531
3SLOG 93 1.3 75
PHODS 142 1.7 86
HS 76 4.5 17
SS 1.182 1.3 909
Wavelet 107 1.5 70
Cavity Detector 37.915 2.9 13,186
CQ 32.268 13.3 2,426
FFT 11 0.9 12

(seconds)

Democritus University of Thrace - VLSI Design and Testing Center 17

Conclusions

Number of executed instructions and
instruction cache misses can be
estimated without simulation process
Instruction cache memory decisions
can be taken from early design steps
Find out the critical points of the
application which give number of
cache miss
Instruction code transformations
could be applied

Democritus University of Thrace - VLSI Design and Testing Center 18

Future Work

Methodology extension for second level
instruction cache (L2)
Tool extension to accept more embedded
processor cores (ARM, TI,…etc)
Application of the methodology to more
complex system architectures (e.g.
software control caches)
High level estimation of processor’s power
consumption using instruction level power
parameters

	Presentation Outline
	Cache and Memory Performance
	Cache Miss Rate Measurements
	Loop Size & Cache Miss Rate (Type 1)
	Loop Size & Cache Miss Rate (Type 2)
	Loop Size & Cache Miss Rate (Type 3)
	Instruction Cache Miss Rate
	The Proposed Methodology
	The Proposed Methodology: 1st Stage
	The Proposed Methodology: 2nd Stage
	The Proposed Methodology: 3rd Stage
	FICA Software Tool
	Number of Executed Instructions
	Number of Instruction Cache Misses
	Estimation vs. Simulation Time
	Conclusions
	Future Work

