

An Estimation Methodology for Designing Instruction Cache Memory of Embedded Systems

Nikolaos Kroupis, <u>Stylianos Mamagkakis</u>, and Dimitrios Soudris

Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece

The project is co-funded by the European Social Fund & National Resources - EPEAEK II - PYTHAGORAS II

- Instruction caches & processor performance
- Instruction cache assumptions
- The proposed estimation methodology of the number of executed instructions and the number of cache misses
- The implemented estimation software tool
- Experimental results and comparison study
- Conclusions and future work

Cache and Memory Performance

Average Memory Access Time = Hit time + Miss rate x Miss penalty

Improving memory hierarchy performance:

- Decrease Ritutime (IC Technology) Cook
- Decrease miss rate (Application Software)
- Decrease miss penalty (IC Technology)

Instruct.

Memory

- Embedded Processor Core Instruction Set Simulator is needed
- Most Instruction Set simulators do not include Cache simulator
- Cache simulation is a time consuming procedure
- Cache miss rate exploration to find the best cache size and parameters needs days of simulation

Loop Size & Cache Miss Rate (Type 1)

INSTRUCTION 3

No Conflict

5

Loop Size & Cache Miss Rate (Type 2)

- *L_s* : Loop Size in number of instructions
- *B_s* : Instruction cache block size
- *N* : Number of loop iterations
- C_s : Cache size

Ν

Loop Size & Cache Miss Rate (Type 3)

Loop Type 3 L_s = 17 instr.

INSTRUCTION 1

INSTRUCTION 2

INSTRUCTION 3

Num_misses : Number of instruction misses

- *L_s* : Loop Size in number of instructions **INSTRUCTION 4**
- *B_s* : Instruction cache block size
 - : Number of loop iterations

INSTRUCTION 5

Democritus University of Thrace - VLSI Design and Testing INSTRUCTION 6 7

Instruction Cache Miss Rate

Num _ *references*
$$= \frac{L - s}{B - s} \times N$$

$$Miss _ rate = \frac{Num _ misses}{Num _ references}$$

Num_misses: Number of instruction missesNum_references: Number of Memory referencesL_s: Loop Size in number of instructionsB_s: Instruction cache block sizeN: Number of loop iterations

The Proposed Methodology

Platform dependent Democritus University of Thrace - VLSI Design and Testing Center Assembly Pinpoint the Create the

The Proposed Methodology: 1st Stage

The Proposed Methodology: 2nd Stage

The Proposed Methodology: 3rd Stage

1 st unique path 3 iterations Node Node 1 Node 5 3 V Node 5 3 Node 5 3 Node 5 3 Node 5 Node Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node 5 Node S Nod	<pre>\$L2: lw \$2,16(\$fp) slt \$3,\$2,10 bne \$3,\$0,\$L5 \$L5: lw \$2,16(\$fp) slt \$3,\$2,3 beq \$3,\$0,\$L6 \$L6: lw \$2,20(\$fp) addu \$2,\$2,\$3 sw \$2,20(\$fp) \$L4: lw \$3,16(\$fp) addu \$2,\$3,1 move \$3,\$2 sw \$3,16(\$fp) j \$L2 \$L1: \$L2: lw \$2,16(\$fp) slt \$3,\$2,10 bne \$3,\$2,20 \$L1: \$L2: lw \$2,16(\$fp) slt \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,10 bne \$3,\$2,20 \$L5: lw \$2,16(\$fp) slt \$3,\$2,30 beq \$3,\$0,\$L5 \$L5: lw \$2,20(\$fp) slt \$3,\$2,30 beq \$3,\$0,\$L6 lw \$2,20(\$fp) slt \$3,\$2,30 beq \$3,\$0,\$L6 lw \$2,20(\$fp) subu \$2,\$2,\$3 sw \$2,20(\$fp) j \$L4 \$L4: lw \$3,16(\$fp) addu \$2,\$3,10 move \$3,\$2 sw \$3,16(\$fp) j \$L4 \$L4: lw \$3,16(\$fp) j \$L4 \$L4: lw \$3,16(\$fp) j \$L2 sw \$3,16(\$fp) j \$L4 \$L1: lw \$3,16(\$fp) j \$L2 sw \$3,</pre>	MIPS IV 64 bits 1 instr. = 8 bytes <u>Unique Path 1 :</u> Consists of : 15 instr. Size : 120 bytes Iterations : 3 <u>Unique Path 2 :</u>	OutputDirect Mapped Cache withBlock Size 8 bytes:Using Equations (1)-(5) forvariable cache sizes: $Num_References = 157$ Cache Size: 32 bytes $Num_Misses_1 = 45$ $Num_Misses_2 = 112$ $Miss rate = 100\%$ Cache Size: 64 bytes $Num_Misses_1 = 42$ $Num_Misses_2 = 112$ $Miss rate = 98\%$ Cache Size: 128 bytes $Num_Misses_1 = 15$ $Num_Misses_1 = 15$ $Num_Misses_1 = 16$
Node 6		Size : 128 bytes Iterations :7	Miss rate = 20 ⁶ % Cache Size: 256 bytes Num_Misses ₁ = 15 Num_Misses ₂ = 16 Miss rate = 20%
Step 1 : Extract all texecution paths of a loops.	the unique assembly code	Step 2 : Computation of # of instructions and # iterations of each execution path	Output : Number of instruction cache misses and miss rate

(C)

Fast Instruction Cache Analyzer (FICA)

- Web based Tool
- PHP Language
- MySQL Database
- MIPS IV Architecture with compiler gcc 2.7.2
- Estimate the number of execution instructions, the number of instruction cache misses and the miss rate
- Extract the critical part of the application which give high miss rate

Number of Executed Instructions

Benchmark	C Code Size (bytes)	Simplescalar (#instructions)	FICA (#instructions)	% Error
FS	1,625	1,138,860,504	1,135,823,110	0.26 %
HS	7,009	37,792,750	36,736,600	2.79 %
3SLOG	3,381	46,717,535	45,865,486	1.82 %
PHODS	3,372	70,865,874	69,375,838	2.10 %
SS	2,587	590,420,249	589,448,105	0.16 %
Wavelet	22,380	39,507,821	39,993,202	1.23 %
Cavity Detector	2,634	18,957,657,996	18,351,605,412	3.19 %
CQ	11,215	6,133,172,759	6,299,874,815	0.26 %
FFT	2,681	687,624	620,154	9.81 %

Number of Instruction Cache Misses

Miss Rate Block size 8 bytes		Cache Size (bytes)					Average		
		64	128	256	512	1024	2048	4096	error
FS	Sim.	100.0	100.0	99.8	99.2	76.8	0.1	0.0	
13	FICA	100.0	100.0	99.9	99.1	38.1	0.1	0.0	5.6 %
цс	Sim.	99.9	97.3	92.5	66.4	2.8	1.6	1.5	
115	FICA	100.0	95.5	84.8	35.8	3.2	2.0	0.5	6.0 %
251.00	Sim.	100.0	99.7	93.1	15.9	1.9	1.8	0.0	
35108	FICA	100.0	99.3	96.3	12.8	0.9	0.3	0.0	1.3 %
PHODS	Sim.	100.0	99.9	99.6	96.7	31.7	0.8	0.2	
THODS	FICA	100.0	100.0	97.9	94.8	15.5	0.9	0.9	2.9 %
55	Sim.	99.9	99.9	98.9	79.9	0.5	0.1	0.0	
22	FICA	100.0	98.9	97.9	41.2	0.0	0.0	0.0	5.9 %
Wayalat	Sim.	98.7	89.9	50.6	3.4	1.0	0.0	0.0	
wavelet	FICA	100.0	91.4	39.3	1.5	0.1	0.0	0.0	2.4 %
Cavity Detector	Sim.	100.0	100.0	94.3	61.4	16.9	0.3	0.1	
	FICA	100.0	100.0	92.4	28.3	0.4	0.0	0.0	7.4 %
CO	Sim.	100.0	99.4	89.1	46.5	9.6	0.4	0.0	
υų	FICA	100.0	100.0	73.7	5.8	0.0	0.0	0.0	9.6 %
FFT	Sim.	99.8	98.7	95.7	87.7	7.1	0.5	0.2	
TT I	FICA	100.0	98.0	92.7	43.1	6.1	4.7	4.7	8.3 %

Estimation vs. Simulation Time

(seconds)	Simpescalar	FICA	Speed Up
FS	2.278	0.9	2,531
3SLOG	93	1.3	75
PHODS	142	1.7	86
HS	76	4.5	17
SS	1.182	1.3	909
Wavelet	107	1.5	70
Cavity Detector	37.915	2.9	13,186
CQ	32.268	13.3	2,426
FFT	11	0.9	12

- Number of executed instructions and instruction cache misses can be estimated without simulation process
- Instruction cache memory decisions can be taken from early design steps
- Find out the critical points of the application which give number of cache miss
- Instruction code transformations could be applied

- Methodology extension for second level instruction cache (L2)
- Tool extension to accept more embedded processor cores (ARM, TI,...etc)
- Application of the methodology to more complex system architectures (e.g. software control caches)
- High level estimation of processor's power consumption using instruction level power parameters